Fractions Policy

Fraction strips: Blank (bar) rectangles (on plain paper) and get used to dividing the bars into halves, thirds, quarters etc:
Shading fractions of shapes:

Fractions of amounts:

	Calculate $3 / 7$ of $420=180$?							
	60	60	60	60	60		60	$\begin{aligned} & 420 \div 7=60 \\ & 60 \times 3=180 \end{aligned}$
				420				Once the pupils are calculating with larger numbers, they are likely to be able to work straight in the abstract context 'divide by denominator, multiply by numerator'
$1 / 4$ of a number is 8 . What is the number?		$\frac{1}{4} \text { of } ?=8$						Use x facts and multiplication $8 \times 4=32 \text { so..... }$
								$1 / 4$ of $32=8$

Equivalent fractions

Simplifying fractions:

Adding fractions (same denominator)

Adding fractions (with different denominators)

Use the same process for subtraction with fractions

Multiplying fractions

Dividing with fractions
Dividing a fraction by a whole number

Concrete	Pictorial	Abstract
$4 / 7 \div 2=$ Use fraction cards and counters	$\begin{aligned} & \frac{4}{7} \div 2=\frac{2}{7} \\ & \frac{1}{7} \frac{1}{7} \frac{1}{7} \frac{1}{7} \\ & \frac{1}{7} \frac{1}{7} \frac{1}{7} \frac{1}{7} \end{aligned}$	$\frac{4}{7} \div 2=\frac{2}{7}$ $*$ diride the numerator by the divisor $\frac{5}{7} \div 2=$ * use x facts to make the numerator divisible by 2 . $\operatorname{eg} \frac{5}{7} \times 3 \frac{10}{14} \div 2=\frac{5}{14}$

Dividing whole numbers by a fraction

